S 2 I ATAI
\@ Chongaing Lhiversity of Advanced Technique of

Technology Atificial Intelligence

Fine-grained Contrastive Learning for Relation Extraction

William Hogan Jiacheng Li Jingbo Shang™
Department of Computer Science & Engineering
University of California, San Diego
{whogan, 7j911i, jshang}@ucsd.edu

2023.2.2 « ChongQing — EMNLP 2022
https://github.com/wphogan/finecl

ungsze,
Qo‘sd‘ 1'0%‘
[\]
B

Reported by JiaWei Cheng y
fiir Sozialwissenschaften ’,é’ at l

D yoseas?®

Leibniz-Institut




W I -

@ Chongging Lhiversity
= of Techndlogy

. “Noam Chomsky was born in Philadelphia.”
. “Noam Chomsky gave a presentation in Philadelphia.”
. “Raised in the streets of Philadelphia, Noam Chomsky...”

[Noam Chomsky, born in, Philadelphia]

1.The authors argue that distantly
supervised relation data contains a
large number of mislabeled data

2.Conventional contrastive learning for
RE does not account for differences in
label accuracy—it treats all instances
equally.
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exp(cos(e;j,e;r)/T)

Fine-grained
Contnl:;iﬁgall_ggrning Golddata  Fine-tuning Output EED - = Zﬁ LET' IOg ;]
EEE J 1—1.12; €xP(cos(e;j,e;1)/T)
. . . Noam Chomsk
«, y exp (COS (I"t},l Iy ) /T)
HEN \..p. r=bornin | ERD — = Z f(kA) log — 3
(RoBERTa) / Z
Learned weights Phila-::relphia tA ,tB eT’
N
Stage 3 zZ = Z f(kC) exp (COS (rtAﬂ rf?c) /T)
tc€T'/{ta}
(5)
kmax—Fk
F(k) = R, ©)

Lrinec, = Le, +Lry, + Ly (7)



Chongging Lhiversity
of Technology

Experiments

L Y al | PEER |

Base Lang. Model Pre-train objective Rp Ep
BERT BERT MLM X X
RoBERTa RoBERTa MLM X X
MTB BERT DPS v X
CP BERT CL + MLM v X
ERICARERT BERT CL + MLM v oo
ERICAROBERT: RoBERTa CL + MLM v oo
WCL BERT WCL + MLM v X
FineCL RoBERTa FineCL + MLM v ooV

Table 1: A comparison of RE pre-training meth-
ods highlighting the pre-training objective: Mask
Language Modeling (MLM), Dot Product Similar-
ity (DPS), Contrastive Learning (CL), Weighted Con-
trastive Learning (WCL), and Fine-grained Contrastive
Learning (FineCL). Rp denotes the presence of relation
discrimination in the loss function, and Ep denotes the
presence of entity discrimination in the loss function.
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Figure 2: Percent of total training instances learned per
epoch when recording batch-based learning order on
distantly labeled data from DocRED.
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Size 1% 10% 100%
Metrics FI IgFl | FI 1IgFl | F1 IgFl
CNN* i - i - | 423 403
BiLSTM* i - i - 511 503
HINBERT* i - 556 537

CorefBERT* 32.8 31.2 | 460 43.7 | 57.0 545
SpanBERT* 322 304 | 464 445|573 550

ERNIE* 2677 255 | 46.7 442 | 56.6 54.2
MTB* 29.0 27.6 | 46.1 44.1 | 569 54.3
Cp* 303 28.7 | 448 42.6 | 552 527
BERT 199 18.8 | 452 43.1 | 56.6 544
RoBERTa 29.6 279 | 476 457 | 582 559

ERICABERT 229 21.7 | 485 464 | 574 552
ERICARoBgrT: | 30.0 28.2 | 50.1 48.1 | 59.1 56.9
WCLRGBERT: 223 20.8 | 494 475 | 585 56.2

FineCL 332 31.2 | 503 483 | 595 571

Table 3: F1-micro scores reported on the DocRED test
set. IgF1 ignores performance on fact triples in the test
set overlapping with triples in the train/dev sets. (* de-
notes performance as reported in (Qin et al., 2021); all
other numbers are from our implementations).
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Metric Fl-macro | Fl-macro-weighted
BERT 37.3 54.9
RoBERTa 39.6 56.9
ERICARBERT 379 55.8
ERICARD BERTa 40.1 57.8
‘!N(:I..Rﬂlgr,ERT;!.L 399 57.2
FineCL 40.7 58.2

Table 4: Fl-macro and Fl-macro-weighted scores re-
ported from the DocRED test set.
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Dataset TACRED SemEval
Size 1% 10% 100% | 1% 10% 100%
MTB#* 357 58.8 682 (442 79.2 88.2
CP* 37.1 606 68.1 | 40.3 80.0 88.5
BERT 222 535 637 |410 765 878
RoBERTa 273 61.1 693 (436 777 8.5

ERICARBERT 349 56.0 649 |464 79.8 88.1
ERICARoperTa | 41.1 61.7 695 | 50.3 80.9 &84
WCLRoBerTa | 37.6 613  69.7 | 47.0 80.0 88.3

FineCL 43.7 62.7 703 | 51.2 81.0 88.7

Table 5: Fl-micro scores reported from the TACRED
and SemEval test sets (* denotes performance as re-
ported in (Qin et al., 2021); all other numbers are from
our implementations).
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Epochs of learning order data % Learned F1 IgFl1

Baseline N/A 58.7 56.5
1 Epoch 45 586 564
3 Epochs 76 58.6 56.3
5 Epochs 83 58.7 56.5
10 Epochs 92 58.8 56.6
15 Epochs 94 59.0 56.7

Table 6: Ablation experiment results on the DocRED
test set with pre-trained models that use learning or-
der data obtained with various training durations. Per-
cent learned refers to the percent of training instances
learned in the set of learned instances (A). “Baseline”
is a pre-trained model that does not leverage learning
order (i.e., all instances are weighted equally during
pre-training).
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Figure 3: Cumulative Jaccard Similarity between sets
of learned instances by epoch from RoBERTa and
SSAN using distantly labeled training data from Do-
cRED.
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